

Comparison of MFD-based approaches with microscopic simulation data for real networks: Production hysteresis and trip length estimation.

Mahendra Paipuri, Ludovic Leclercq & Jean Krug

Univ. Lyon, ENTPE, IFSTTAR, LICIT, F-69518, Lyon, France

14th January 2019 98th TRB Annual Meeting 2019, Washington D.C., USA

Motivation
oNetwork description
oCalibration
coloMFD-based models
oValidation Results
oConclusions
oThank youl
o

MFD-based models

- Core ingredient is the shape of Macroscopic Fundamental Diagram (MFD).
- Empirical studies showed clockwise hysteresis-like loops in production MFD.
- The validity of constant mean trip hypothesis.
- Verification of MFD-based models using real network data.

Toulouse city emprical data taken from Buisson and Ladier (2009).

- An investigation into calibration of MFD shapes. Unimodal and bimodal MFD shapes are considered.
- To integrate the bimodal MFD shape with production hysteresis into the frameworks of MFD-based models.
- To study the importance of level of trip length descriptions in MFD-based simulations.
- Importance of re-calibration of MFD and trip lengths to the changes in OD matrix.
- Verification of MFD-based models on 6th district of Lyon city network using microsimulation data.

Lyon 6 network attributes

- OD matrix and demand are estimated from empirical data of Lyon city network.
- Lyon 6 has 21 OD zone pairs.
- Internal and transfer trips.

TRB 2019, Washington D.C.

Microsimulation settings

- Microsimulations are computed using Symuvia platform.
- FD parameters for cars: u = 25 m/s, w = 5.88 m/s and $\kappa = 0.17 veh/s$. Trucks: u = 22 m/s, w = 5.88 m/s and $\kappa = 0.075 veh/s$.
- Public transport is also considered in the simulation.
- Free flow speed is adjusted to link speed limits.
- Truck demand is assumed to be 5% of car demand.
- Signal settings are implemented based on real data.
- Morning peak hour duration from 06h30 to 13h30 is considered.

Influence of aggregation time

- A reference scenario with peak demand close to network saturation.
- Signal settings are in order of 100 *sec*.
- Microscopic variables: Total Travel Distance (TTD) and Total Travel Time (TTT).
- Aggregation period of 600 *sec* is used in all computations.

Motivation	Network description	Calibration	MFD-based models	Validation Results	Conclusions	Thank you!
••	••	••00				

Unimodal and bimodal MFD fits

Motivation	Network description	Calibration	MFD-based models	Validation Results	Conclusions	Thank you!
••		•••0				

Trip lengths distribution

Trip lengths computation methods

- Mean trip: one trip length using arithmetic mean of all trips is used.
- OD trips: trips based on origin and destination with respect to Lyon 6 area. Four different trips are considered.
- Similar trips: trips having similar lengths are clustered into bins.
- Individual trips: each trip is considered explicitly.

Accumulation-based model

Daganzo, 2007; Geroliminis & Daganzo, 2008. Based on conservation equation

$$\frac{dn_i}{dt} = q_{in,i}(t) - q_{out,i}(t)$$
 for $i = 1, \dots, ntrips$

 n_i : Accumulation on trip i

 $q_{in,i}$: Demand on trip *i*, known *a priori*

$$q_{out,i} = \begin{cases} \frac{n_i}{n} \frac{P(n)}{L_i} & n < n_c \\ \frac{n_i}{n} \frac{P_c}{L_i} & n \ge n_c. \end{cases}$$

 L_i : Length of trip *i* n_c , P_c : Critical accumulation and production Trip-based model

Arnott 2013, Mariotte & Leclercq 2017. Mathematically expressed as

$$L = \int_{t-T(t)}^{t} V(n(s)) \, ds.$$

V(n): Mean speed

Event-based framework is used in present work. Input: Starting times of the trips and length of each trip. Individual trips are considered.

Free flow traffic state scenario

- Only unimodal MFD fit is considered.
- OD trips are used.
- MFD-based results are also aggregated.

Network saturation traffic state scenario

- Both unimodal and bimodal MFD fits are considered.
- OD trips are used.

Accumulation-based with unimodal fit, mean trip and trip-based with bimodal fit, similar trips are the best results amongst considered ones.

Network saturation traffic state scenario

- Accumulation-based with unimodal fit and mean trip.
- Trip-based with bimodal fit and similar trips.

Motivation Network description Calibration MFD-based models Validation Results Conclusions Thank you o

Network saturation traffic state scenario with modified OD matrix

- Mean trip length is increased in the modified OD distribution.
- Only accumulation-based with unimodal fit and trip-based with bimodal fit is considered.

Without recalibration of p-MFD fit and trip lengths

- OD trips are used. Trip lengths from original OD matrix are used.
- MFD fits from original OD matrix are used.

With recalibration of p-MFD and trip lengths

Trip lengths and MFD fits are re-calibrated based on the modified OD matrix.

••	••	●O	0

Conclusions

- Unimodal MFD fit is sufficient in the free flow regime of MFD-based models.
- Trip-based method with bimodal MFD fit results in hysteresis comparable to microsimulation.
- Refined trip length description produces more accurate results in trip-based.
- Mean trip length gives good approximation in accumulation-based.
- The importance of re-calibration of trip lengths and MFD fits is demonstrated when OD patterns are changed.

Acknowledgments

This project is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 646592 - MAGnUM project).

European Research Council

Established by the European Commission

Motivation	Network description	Calibration	MFD-based models	Validation Results	Conclusions	Thank you!
••	••		••		••	•

20

Thank you for your attention.

Mahendra Paipuri A, Ludovic Leclercq & Jean Krug

mahendra.paipuri@entpe.fr

★ Univ Lyon, ENTPE, IFSTTAR, LICIT UMR _T 9401, F-69518, LYON, France Rue Maurice Audin 69518 Vaulx-en-Velin Cedex France

+33 (0)4 72 04 77 08

www.licit-lyon.eu | https://magnum.ifsttar.fr | www.ifsttar.fr

TRB 2019, Washington D.C.