

Calibrating MFD models from Mobile Phone Data

Mahendra Paipuri¹, Yanyan Xu², Marta C. Gonzalez² & Ludovic Leclercq¹

¹Univ. Lvon, ENTPE, IFSTTAR, LICIT, F-69518, Lvon, France ²Department of City and Regional Planning, UC Berkeley, Berkeley, United States

18th October 2019

Trip Length Analysis

 Estimate dynamic trip lengths for a typical day between different OD pairs.

$$\bar{L} = \int_{t}^{t+\Delta T} L(n(s)) \, \mathrm{d}s.$$

• Estimate path flow coefficient evolution with time for different OD pairs.

$$\alpha_i(t) = \frac{n_i(t)}{\sum_i n_i(t)}.$$

 Trip length distribution within a reservoir. Compute the coefficient of variability.

UE and BRUE gaps

Gap in User Equilibrium (UE).

$$\mathsf{Gap}_{UE}^{od}(t) = rac{\sum_{i} lpha_{i} \left(t_{i} - t^{*}
ight)}{\sum_{i} lpha_{i}}$$

Gap in Bounded Rational User Equilibrium (BRUE).

$$\mathsf{Gap}^{od}_{BRUE}(t) = \frac{\sum_{i} \alpha_{i} \; \max((t_{i} - (1 + \epsilon)t^{*}), 0)}{\sum_{i} \alpha_{i}}$$

• t^* is the shortest macropath trip that starts at time t.